New research shows how arrays of tiny electronic devices can achieve human-skin-like sensitivity to mechanical force.
Arrays of transistors made of nanowires could form the basis of a new class of devices nearly as sensitive to mechanical force as human skin is. The inventor of the technology, Zhong Lin Wang, a professor of materials science and engineering at Georgia Tech, says it has immediate applications in human-machine interfaces. For example, it could be used to capture electronic signatures by recording the distinctive force an individual applies while signing. Down the road, says Wang, his group’s pressure sensor arrays could equip robotics and prosthetics with a human-like sense of touch.
Electronically replicating the sensitivity of the human sense of touch has proved extremely challenging. Recently, some research groups have demonstrated that micro- or nanoelectronics assembled on flexible, bendable substrates could monitor pressure changes at a fairly high level of detail and thus could potentially act as a kind of “artificial skin.” In the new research, Wang’s group demonstrates nanoelectronics that offer at least a 15-fold enhancement in sensor density and spatial resolution compared to the previous approaches. Further, the electronic properties of the nanowires allowed the researchers to demonstrate through high-resolution imaging an improvement in sensitivity of two to three orders of magnitude. The density, resolution, and sensitivity of the sensors, says Wang, is comparable to that of the skin of a human finger.
Arrays of transistors made of nanowires could form the basis of a new class of devices nearly as sensitive to mechanical force as human skin is. The inventor of the technology, Zhong Lin Wang, a professor of materials science and engineering at Georgia Tech, says it has immediate applications in human-machine interfaces. For example, it could be used to capture electronic signatures by recording the distinctive force an individual applies while signing. Down the road, says Wang, his group’s pressure sensor arrays could equip robotics and prosthetics with a human-like sense of touch.
Electronically replicating the sensitivity of the human sense of touch has proved extremely challenging. Recently, some research groups have demonstrated that micro- or nanoelectronics assembled on flexible, bendable substrates could monitor pressure changes at a fairly high level of detail and thus could potentially act as a kind of “artificial skin.” In the new research, Wang’s group demonstrates nanoelectronics that offer at least a 15-fold enhancement in sensor density and spatial resolution compared to the previous approaches. Further, the electronic properties of the nanowires allowed the researchers to demonstrate through high-resolution imaging an improvement in sensitivity of two to three orders of magnitude. The density, resolution, and sensitivity of the sensors, says Wang, is comparable to that of the skin of a human finger.